A NOTE ON EUCLIDEAN RAMSEY THEORY AND A CONSTRUCTION OF BOURGAIN

N. ALON and Y. PERES (Tel Aviv)

1. Qualitative facts

Let v be a fixed unit vector in a Hilbert space Ω. Denote

$$
\Omega_{c}=\{\omega \in \Omega \mid\langle v, \omega\rangle=c,\|\omega\|=1\}
$$

for a real $0<c<1$. Bessel's inequality implies that any orthogonal sequence in Ω_{c} is finite. Thus, Ramsey's theorem implies

FACT 1. From any infinite sequence $\left\{\omega_{n}\right\}_{n=1}^{\infty}$ in Ω_{c} an infinite subsequence can be extracted, with no two vectors orthogonal.

We will be interested in the "size" of the subsequence which can be extracted, especially when a further restriction is put on the sequence $\left\{\omega_{n}\right\}$. In particular, we show that a subsequence of positive density cannot always be extracted.

Definitions. I. A sequence of vectors $\left\{\omega_{n}\right\}$ in a Hilbert space is stationary if $\left\langle\omega_{i+n}, \omega_{j+n}\right\rangle=\left\langle\omega_{i}, \omega_{j}\right\rangle$ for all i, j, n.
II. A set of integers $H \subset \mathbf{N}$ is a Van der Corput set if every probability measure μ on the circle satisfying $\hat{\mu}(h)=\int e^{-i h t} d \mu(t)=0$ for every $h \in H$ satisfies $\mu\{0\}=0$.
III. A set of integers $H \subset \mathbf{N}$ is a Poincare set if for every set $S \subset \mathbf{N}$ of positive density, H intersects the difference set $S-S$. (For an alternative ergodic theory definition see [3].)

Kamae and Mendes France [5] proved that all Van der Corput sets are Poincare sets. Recently, J. Bourgain [1] has proved that the reverse implication does not hold. This implies

Fact 2. There exist a $0<c<1$ and a stationary sequence of vectors $\left\{\omega_{n}\right\}$ in Ω_{c} such that for any $S \subset \mathbf{N}$ of positive density, $\omega_{n} \mathcal{L} \omega_{m}$ for some $m, n \in S$.

Proof Let H be a Poincare set which is not Van der Corput. There exists a measure μ for which $\hat{\mu}(n)=0 \forall n \in H$ and $\mu\{0\}=c^{2}>0$. Let Ω be the Hilbert space $L^{2}[0,2 \pi)$. Let $\omega_{n}(t)=e^{i n t}$, and denote

$$
v(t)= \begin{cases}c^{-1}, & t=0 \\ 0, & t \neq 0\end{cases}
$$

Clearly $\omega_{n} \in \Omega_{c}$. For any sequence $S \subset \mathbf{N}$ of positive density, some $m, n \in S$ satisfy $m-n \in H$ and hence $\hat{\mu}(m-n)=\left\langle\omega_{m}, \omega_{n}\right\rangle=0$.

Bourgain's construction is difficult; thus we note
Fact 3. From any sequence $\left\{\omega_{n}\right\}$ satisfying the conclusion of Fact 2, one can easily construct a Poincare set which is not Van der Corput.

Proof. By the stationarity of $\left\{\omega_{n}\right\}$, the sequence $\left\{\left\langle\omega_{n}, \omega_{0}\right\rangle\right\}$ is positive definite, so by Herglotz's theorem [6], there exists a positive measure μ on the circle, such that $\hat{\mu}(n)=\left\langle\omega_{n}, \omega_{0}\right\rangle$ for all n. From $\left\langle\omega_{n}, v\right\rangle=c>0$ it easily follows that $\mu\{0\}>0$. (Indeed, $\left\{\omega_{n}-c v\right\}$ is stationary and hence there is a positive measure v so that $\hat{\nu}(n)=\left\langle\omega_{n}-c v, \omega_{0}-c v\right\rangle=\hat{\mu}(n)-c^{2}$. This implies $\mu=\nu+c^{2} \delta_{0}$ and $\mu\{0\} \geqq c^{2}$.) Thus $H=\{n>0 \mid \hat{\mu}(n)=0\}$ is the desired Poincare set.

If we ignore the geometry and concentrate on the combinatorics of Fact 2, we get
 so that

1. there is no white Clique of size K_{0},
II. there is no black Clique of positive upper density, and
III. the colouring is stationary: $\{i, j\}$ and $\{i+n, j+n\}$ are coloured identically.
H. Furstenberg and B. Weiss [private communication] have given an elegant example which shows Fact 4 with $K_{0}=3$: Colour $\{i, j\}$ white if for some integer $x, i-j=x^{3}$, black otherwise. There is no white clique of size 3, because of Fermat's last theorem with exponent 3 ; there is no black clique of positive density because the set $\left\{x^{3}\right\}_{x \in \mathrm{~N}}$ is a Poincare set (see [3]).

2. Two Ramsey-like functions

Definition. For $0<c<1$, define a function $\Lambda_{c}: \mathbf{N} \rightarrow \mathbf{N}$ as follows: $\Lambda_{c}(k)$ is the minimal N such that from any stationary sequence $\left\{\omega_{n} \mid 0 \leqq n<N\right\}$ in Ω_{c}, k elements can be extracted, no two of which are orthogonal. $\Gamma_{c}(k)$ is defined similarly, without the stationarity constraint.

Clearly $\Lambda_{c} \leqq \Gamma_{c}$.
FACT 5. $\Gamma_{c}(2)=\Lambda_{c}(2)=\left[c^{-2}\right]+1$.
Proof. Put $N=N_{c}=\left[c^{-2}\right]+1$ and $d=\sqrt{1-(N-1) c^{2}}$. Let A be an orthogonal N by N matrix whose first column is the vector (c, c, \ldots, c, d). Let v be the N-dimensional vector $(1,0, \ldots, 0)$, and let $\omega_{0}, \ldots, \omega_{N-2}$ be the first $N-1$ row vectors of A. Clearly $\omega_{n} \in \Omega_{c}$ and $\left\langle\omega_{n}, \omega_{m}\right\rangle=0$. Thus $\Gamma_{c}(2) \geqq \Lambda_{c}(2)>N-1$. It remains to show that $\Gamma_{c}(2) \leqq N$. Indeed, if this is false, there are N orthogonal vectors $\left\{\omega_{n} \mid 0 \leqq n<N\right\}$ in Ω_{c}. Bessels inequality $\|v\|^{2} \geqq \sum\left|\left\langle v, \omega_{i}\right\rangle\right|^{2}=c^{2} \cdot N>1$ gives the desired contradiction.

FACT 6. $\Gamma_{c}(k) \leqq R\left(N_{c}, k\right)$ where $R(N, k) \leqq\binom{ N+k-2}{N-1}$ is the Ramsey number corresponding to N and k (see [4]).

This is immediate from Fact 5.

The upper bound above is not tight. For Λ_{c} we do not have a better upper bound. Regarding lower bounds we note

Proposition 1. $A_{c}(k)$ does not increase linearly with k, for some $0<c<1$.
Proposition 2. There exist $0<c<1, \alpha>1$ and an increasing sequence $\left\{k_{l} \mid l \geqq 1\right\}$ satisfying $\Gamma_{c}\left(k_{l}\right) \geqq k_{l}^{\alpha}$ for all l.

Proposition 1 follows from Fact 2; Proposition 2 is a consequence of the following result, due to Frankl and Wilson [2]:

Theorem. [2]. Let \mathscr{F} be a family of subsets of $\{1, \ldots, n\}$ such that for every $F \in \mathscr{F}$, $|F|=k$, and let $q<k$ be a prime power. If every different $F, F^{\prime} \in \mathscr{F}$ satisfy $\left|F \cap F^{\prime}\right| \not \equiv$ $\neq k \bmod q$ then $|\mathscr{F}| \equiv\binom{n}{q-1}$.

Proof. Denote $n=2^{l}, N=\binom{n}{\frac{3 n}{8}}$ and let $\left\{F_{j}\right\}_{J=1}^{N}$ be all subsets of $\{1, \ldots, n\}$ of size $\frac{3 n}{8}$. Define vectors $\left\{\omega_{i}\right\}_{i=1}^{N}$ in \mathbf{R}^{n} by

$$
\omega_{i}=n^{-1 / 2}\left(2 \cdot 1_{F_{i}}-1\right)
$$

where 1_{F} is the indicator vector of F.
Define also $y=-n^{-1 / 2}(1,1, \ldots, 1) \in \mathrm{R}^{n}$. For $1 \leqq i \leqq N$ we get

$$
\begin{gathered}
\|v\|=\left\|\omega_{j}\right\|=1, \quad\left\langle v, \omega_{i}\right\rangle=\frac{1}{4}=c, \\
\omega_{i} \perp \omega_{j} \Leftrightarrow\left|F_{i} \cap F_{j}\right|=n / 8 \equiv \frac{3 n}{8}\left(\bmod \frac{n}{4}\right) .
\end{gathered}
$$

$q=\frac{n}{4}$ is a power of 2 . Thus the theorem cited above shows that any subset \mathscr{F} of $\left\{\omega_{1}, \ldots, \omega_{N}\right\}$ which does not contain orthogonal vectors, satisfies

$$
|\mathscr{F}| \leqq\binom{ n}{\frac{n}{4}-1} .
$$

In other words, for $k_{l}=\binom{n}{n / 4}, \Gamma_{c}\left(k_{l}\right)>\binom{3}{\frac{3 n}{8}}$ and

$$
\lim _{l \rightarrow \infty} \frac{\log \Gamma_{c}\left(k_{l}\right)}{\log k_{l}} \geqq \frac{h\left(\frac{3}{8}\right)}{h\left(\frac{1}{4}\right)}>1
$$

where $h(x)=-x \log x-(1-x) \log (1-x)$ is the binary entropy function. Any α smaller than the entropy ratio above will do.

References

[1] J. Bourgain, Ruzsa's problem on sets of recurrence, Israel J. Math.; 59 (1987), 150-166. $^{\text {I }}$
[2] P. Frankl and R. M. Wilson, Intersection theorems with geometric consequences, Combinatorica; 1 (1981), 357-368.
[3] H. Furstenberg, Recurrence in ergodic theory and combinatorial number theory, Princeton University Press (Princeton, New Yersey, 1981).
[4] R. Graham, B. Rothschild, J. Spencer, Ramsey theory, Wiley (New York, 1981).
[5] T. Kamae, M. Mendes France, Van der Corput's difference theorem, Israel J. of Math.; 31 (1978), 335-342.
[6] Y. Katznelson, An Introduction to Harmonic Analysis, Wiley (New York, 1968).
[7] Y. Peres, Application of Banach limits to the study of sets of integers, Israel J. Math., 62 (1988), 17-31.
(Received June 17, 1987)
SCHOOL OF MATHEMATICAL SCIENCES
TEL AVIV UNIVERSTTY
TEL AVIV
ISRAEL

