A NOTE ON EUCLIDEAN RAMSEY THEORY AND A CONSTRUCTION OF BOURGAIN

N. ALON and Y. PERES (Tel Aviv)

1. Qualitative facts

Let v be a fixed unit vector in a Hilbert space Ω . Denote

$$\Omega_{c} = \{ \omega \in \Omega | \langle v, \omega \rangle = c, \| \omega \| = 1 \}$$

for a real 0 < c < 1. Bessel's inequality implies that any orthogonal sequence in Ω_c is finite. Thus, Ramsey's theorem implies

FACT 1. From any infinite sequence $\{\omega_n\}_{n=1}^{\infty}$ in Ω_c an infinite subsequence can be extracted, with no two vectors orthogonal.

We will be interested in the "size" of the subsequence which can be extracted, especially when a further restriction is put on the sequence $\{\omega_n\}$. In particular, we show that a subsequence of positive density cannot always be extracted.

DEFINITIONS. I. A sequence of vectors $\{\omega_n\}$ in a Hilbert space is *stationary* if $\langle \omega_{i+n}, \omega_{j+n} \rangle = \langle \omega_i, \omega_j \rangle$ for all i, j, n.

II. A set of integers $H \subset \mathbb{N}$ is a Van der Corput set if every probability measure μ on the circle satisfying $\hat{\mu}(h) = \int e^{-i\hbar t} d\mu(t) = 0$ for every $h \in H$ satisfies $\mu\{0\} = 0$. III. A set of integers $H \subset \mathbb{N}$ is a Poincare set if for every set $S \subset \mathbb{N}$ of positive

III. A set of integers $H \subset \mathbb{N}^{\circ}$ is a *Poincare set* if for every set $S \subset \mathbb{N}$ of positive density, H intersects the difference set S-S. (For an alternative ergodic theory definition see [3].)

Kamae and Mendes France [5] proved that all Van der Corput sets are Poincare sets. Recently, J. Bourgain [1] has proved that the reverse implication does not hold. This implies

FACT 2. There exist a 0 < c < 1 and a stationary sequence of vectors $\{\omega_n\}$ in Ω_c such that for any $S \subset \mathbb{N}$ of positive density, $\omega_n \perp \omega_m$ for some $m, n \in S$.

PROOF Let *H* be a Poincare set which is not Van der Corput. There exists a measure μ for which $\hat{\mu}(n)=0 \quad \forall n \in H$ and $\mu\{0\}=c^2>0$. Let Ω be the Hilbert space $L^2[0, 2\pi)$. Let $\omega_n(t)=e^{int}$, and denote

$$v(t) = \begin{cases} c^{-1}, & t = 0\\ 0, & t \neq 0. \end{cases}$$

Clearly $\omega_n \in \Omega_c$. For any sequence $S \subset \mathbb{N}$ of positive density, some $m, n \in S$ satisfy $m-n \in H$ and hence $\hat{\mu}(m-n) = \langle \omega_m, \omega_n \rangle = 0$. \Box

Bourgain's construction is difficult; thus we note

FACT 3. From any sequence $\{\omega_n\}$ satisfying the conclusion of Fact 2, one can easily construct a Poincare set which is not Van der Corput.

PROOF. By the stationarity of $\{\omega_n\}$, the sequence $\{\langle \omega_n, \omega_0 \rangle\}$ is positive definite, so by Herglotz's theorem [6], there exists a positive measure μ on the circle, such that $\hat{\mu}(n) = \langle \omega_n, \omega_0 \rangle$ for all *n*. From $\langle \omega_n, v \rangle = c > 0$ it easily follows that $\mu\{0\} > 0$. (Indeed, $\{\omega_n - cv\}$ is stationary and hence there is a positive measure ν so that $\hat{\nu}(n) = \langle \omega_n - cv, \omega_0 - cv \rangle = \hat{\mu}(n) - c^2$. This implies $\mu = \nu + c^2 \delta_0$ and $\mu\{0\} \ge c^2$.) Thus $H = \{n > 0 | \hat{\mu}(n) = 0\}$ is the desired Poincare set. \Box

If we ignore the geometry and concentrate on the combinatorics of Fact 2, we get

FACT 4. For some K_0 , the edges of the complete graph on N can be 2-coloured so that

I. there is no white Clique of size K_0 ,

II. there is no black Clique of positive upper density, and

III. the colouring is stationary: $\{i, j\}$ and $\{i+n, j+n\}$ are coloured identically.

H. Furstenberg and B. Weiss [private communication] have given an elegant example which shows Fact 4 with $K_0=3$: Colour $\{i, j\}$ white if for some integer $x, i-j=x^3$, black otherwise. There is no white clique of size 3, because of Fermat's last theorem with exponent 3; there is no black clique of positive density because the set $\{x^3\}_{x\in\mathbb{N}}$ is a Poincare set (see [3]). \square

2. Two Ramsey-like functions

DEFINITION. For 0 < c < 1, define a function $\Lambda_c: \mathbb{N} \to \mathbb{N}$ as follows: $\Lambda_c(k)$ is the minimal N such that from any stationary sequence $\{\omega_n | 0 \le n < N\}$ in Ω_c , k elements can be extracted, no two of which are orthogonal. $\Gamma_c(k)$ is defined similarly, without the stationarity constraint.

Clearly $\Lambda_c \leq \Gamma_c$.

FACT 5.
$$\Gamma_c(2) = \Lambda_c(2) = [c^{-2}] + 1.$$

PROOF. Put $N=N_c=\lfloor c^{-2}\rfloor+1$ and $d=\sqrt{1-(N-1)c^2}$. Let A be an orthogonal N by N matrix whose first column is the vector (c, c, ..., c, d). Let v be the N-dimensional vector (1, 0, ..., 0), and let $\omega_0, ..., \omega_{N-2}$ be the first N-1 row vectors of A. Clearly $\omega_n \in \Omega_c$ and $\langle \omega_n, \omega_m \rangle = 0$. Thus $\Gamma_c(2) \ge A_c(2) > N-1$. It remains to show that $\Gamma_c(2) \le N$. Indeed, if this is false, there are N orthogonal vectors $\{\omega_n | 0 \le n < N\}$ in Ω_c . Bessels inequality $||v||^2 \ge \sum |\langle v, \omega_i \rangle|^2 = c^2 \cdot N > 1$ gives the desired contradiction. \Box

FACT 6. $\Gamma_c(k) \leq R(N_c, k)$ where $R(N, k) \leq \binom{N+k-2}{N-1}$ is the Ramsey number corresponding to N and k (see [4]).

This is immediate from Fact 5. \Box

Acta Mathematica Hungarica 57, 1991

The upper bound above is not tight. For Λ_c we do not have a better upper bound. Regarding lower bounds we note

PROPOSITION 1. $\Lambda_c(k)$ does not increase linearly with k, for some 0 < c < 1.

PROPOSITION 2. There exist 0 < c < 1, $\alpha > 1$ and an increasing sequence $\{k_l | l \ge 1\}$ satisfying $\Gamma_c(k_l) \ge k_l^{\alpha}$ for all l.

Proposition 1 follows from Fact 2; Proposition 2 is a consequence of the following result, due to Frankl and Wilson [2]:

THEOREM. [2]. Let \mathcal{F} be a family of subsets of $\{1, ..., n\}$ such that for every $F \in \mathcal{F}$, |F| = k, and let q < k be a prime power. If every different $F, F' \in \mathcal{F}$ satisfy $|F \cap F'| \neq k$ $\not\equiv k \mod q \quad then \quad |\mathscr{F}| \leq \binom{n}{q-1}.$

PROOF. Denote $n=2^{l}$, $N=\left(\frac{n}{3n}\right)$ and let $\{F_{j}\}_{j=1}^{N}$ be all subsets of $\{1, ..., n\}$

of size $\frac{3n}{8}$. Define vectors $\{\omega_i\}_{i=1}^N$ in \mathbb{R}^n by $\omega_i = n^{-1/2} (2 \cdot 1_{F_s} - 1)$

where 1_F is the indicator vector of F. Define also $v = -n^{-1/2}(1, 1, ..., 1) \in \mathbb{R}^n$. For $1 \le i \le N$ we get

$$\|v\| = \|\omega_j\| = 1, \quad \langle v, \omega_i \rangle = \frac{1}{4} = c,$$
$$\omega_i \perp \omega_j \Leftrightarrow |F_i \cap F_j| = n/8 \equiv \frac{3n}{8} \left(\mod \frac{n}{4} \right)$$

 $q = \frac{n}{4}$ is a power of 2. Thus the theorem cited above shows that any subset \mathscr{F} of $\{\omega_1, ..., \omega_N\}$ which does not contain orthogonal vectors, satisfies

$$|\mathscr{F}| \leq \binom{n}{\frac{n}{4}-1}.$$

In other words, for $k_l = \binom{n}{n/4}$, $\Gamma_c(k_l) > \binom{3}{\frac{3n}{8}}$ and

$$\lim_{l \to \infty} \frac{\log \Gamma_c(k_l)}{\log k_l} \ge \frac{h\left(\frac{3}{8}\right)}{h\left(\frac{1}{4}\right)} > 1$$

where $h(x) = -x \log x - (1-x) \log (1-x)$ is the binary entropy function. Any x smaller than the entropy ratio above will do. \square

Acta Mathematica Hungarica 57, 1991

References

- [1] J. Bourgain, Ruzsa's problem on sets of recurrence, Israel J. Math., 59 (1987), 150-166.
- P. Frankl and R. M. Wilson, Intersection theorems with geometric consequences, Combinatorica, 1 (1981), 357-368.
- [3] H. Furstenberg, Recurrence in ergodic theory and combinatorial number theory, Princeton University Press (Princeton, New Yersey, 1981).
- [4] R. Graham, B. Rothschild, J. Spencer, Ramsey theory, Wiley (New York, 1981).
- [5] T. Kamae, M. Mendes France, Van der Corput's difference theorem, Israel J. of Math.; 31 (1978), 335-342.
- [6] Y. Katznelson, An Introduction to Harmonic Analysis, Wiley (New York, 1968).
- [7] Y. Peres, Application of Banach limits to the study of sets of integers, Israel J. Math., 62 (1988), 17-31.

(Received June 17, 1987)

SCHOOL OF MATHEMATICAL SCIENCES TEL AVIV UNIVERSITY TEL AVIV ISRAEL